

Indiana Data Collection Sharing And Telling Our Story

Nathan Stoelting & Laura Fribley

District Support Specialists Indiana State Dept. of Agriculture

Possibilities. Promise. Purpose.

Over 73,000 Region 5 Modeled practices since 2013!

Conservation Project Tracking

Indiana has a unique situation

Tracking ALL ICP cost-shared practices since 2013

ICP Conservation Database includes

- » NRCS Applied Conservation Practices/Agronomic
- » SWCD Applied Conservation Practices
- » ISDA-DSC & CWI Applied Conservation Practices
- » DNR-LARE Applied Conservation Practices
- » IDEM-319 Applied Conservation Practices

ONLY state with a comprehensive data sharing agreement with our federal partners

Data Collection Flow Chart

Tracking allows the ICP to monitor the success of cost-share programs in various geographic regions

All conservation data is stored in points geodatabase

Some parameters tracked include

- Practice Name
- Load Reductions
- UTM XY
- Applied Date
- Program
- Size

We can defend the work we do as conservationists as well as the work of private landowners

2018 Nitrogen Load Reductions 1,899,185 Pounds

Based on EPA Region 5 Model analyses conducted on 14,094 conservation practices installed by the Indiana Conservation Partnership January 2018 thru December 2018. This effort does not include the many unassisted practices designed and installed solely by a private landowner without ICP assistance.

Reductions in dissolved nutrients, such as dissolved reactive phosphorus (DRP) and nitrate (NO3), are not accounted for by the Region 5 Model.

March 7, 2019 Trevor Laureys, ISDA Program Manager Deb Fairhurst, ISDA Program Manager To learn more about Indiana's Nutrient Reduction Strategy visit: http://www.in.gov/isda/2991.htm For questions and comments email ISDANutrientReduction@isda.in.gov

1,899,185 pounds of nitrogen. That's enough to fill 9.5 freight cars.

Nitrogen Reductions (Ibs./year)

Tracking progress -

INDIANA STATE DEPARTMENT OF A G R I C U L T U R E

Key Regulatory Challenge:

Water Quality as it relates to Nutrients and Non-point Source Runoff

Congressional Districts

in.gov/isda/2991.htm

Why do we use the Region 5 Model?

It's simple, and we need a lot of people with different backgrounds to be able to implement it

Requires little training and no software

Helps us illustrate the value and impact of conservation practice implementation.

The model can locate exact locations to accurately determine load reductions.

GUIDANCE

- Available on SharePoint: <u>https://ingov.sharepoint.com/sites/ISDAPortal/swcd</u>
 - Theres a link on the sidebar titled "Region 5 Model"
 - Go here for BMP descriptions <u>http://it.tetratech-</u> <u>ffx.com/steplweb/STEPLmain_files/BestManagementPracticesDefinitions.pdf</u>

Practice from SharePoint Conservation Tracking Sheet	₹ Region 5 Model Workshee	C factor befo C	C factor after ▼ P	factoi 😁	Notes May need to use with HUAP; Contributing Area = 0.5 acres minimum	# of Ye 💌	LRR	Value	(in y
s Road (560)(ft.)	Ag Fields and Filter Strips	0.9 - 0.7	0.2	1.00	per unit		-		-
nel Bed Stabilization (584)(feet)	Bank Stabilization			-			based on site	0.9	
ervation Cover (327)(acres)	Ag Fields and Filter Strips	refer to charts on C factor tab		Contributing Area: For partial field cover, use drainage area + acreage of seeded area. For whole field cover, use total field acres treated by conservation refer to charts on C factor tab 1.00 cover.			S - 0.65, P - 0.75 N - 0.70	5,	
ructed Wetland (656)(acres)	Ag Fields and Filter Strips	use default from R5 Model	0.04	1.00	Contributing Area (acres) should be the drainage area for the practice				
Season Grasses (CP1)(acres)	Ag Fields and Filter Strips	refer to charts on C factor tab		1.00	Contributing Area should be acres treated by grass planting.				
Crop (340)(acres)	Ag Fields and Filter Strips	refer to charts or	n C factor tab	1.00	Contributing Area should be acres treated by Cover Crop.				
					Contributing Area is acreage draining to	-		S - 0.65, P - 0.75	,
2 Establishment of Permanent Native Grass (ft and acres)(327)	Ag Fields and Filter Strips	refer to charts or	n C factor tab	1.00	Filter Strip + acreage of seeded area.			N - 0.70	
					Contributing Area is acreage draining to			S - 0.65, P - 0.75	

INDIANA'S TILLAGE & COVER CROP TRANSECT

Windshield survey has been conduced since 1989 (30 YEARS OLD!), established during Indiana's T-2000 movement

Established originally to:

- Evaluate progress towards T-2000 goals
- Provide SWCDs with information for establishing priorities
- Provide accurate data on tillage systems and crop residue

Predefined "random route" – most county routes still resemble original

A Roadside Survey Method for Obtaining Reliable County- and Watershed-Level Tillage, Crop Residue, and Soil Loss Data

Procedures for Cropland Transect Surveys

Indiana's T-by-2000 Soil Conservation Education Program

Purdue University

SOME QUICK THOUGHTS

- Methodology suggests "approximately 460 (~900+ observations) different cropland sites will need to be observed along the route" in half-mile intervals
- In counties with high urbanization, woodlands, etc, collecting data on 460 cropland sites may not be feasible, collect as much as possible
- 3. Alternate methods have been investigated and supported

DATA ENTRY

COUNTY TRANSECT							
Field No	Prev Crp	Fall Tillage	Residue	Cover Crop	CC Quality	CC Method	Notes
1L	В	N	5	N	N	N	
1R	В	N	5	N	N	N	
2L	В	N	5	Ν	N	N	
2R	В	N	5	N	N	N	
3L	В	N	5	N	N	N	
3R	В	N	5	N	N	N	
4L	С	N	5	N	N	N	
4R	В	N	5	N	N	N	
5L	В	N	5	N	N	N	
5R	В	N	5	N	N	N	
6L	В	N	5	N	N	N	
6R	В	N	5	N	N	N	
7L	С	N	5	N	N	N	
7R	С	N	5	N	N	N	
8L	В	N	5	N	N	N	
8R	С	M	3	N	N	N	
9L	В	N	5	N	N	N	
9R	В	M	3	Ν	N	N	
10L	В	N	5	Ν	N	N	
10R	В	N	5	N	N	N	

TRANSECT DATA REPORT

- Percent and number of fields with indicated tillage system for each present crop
 - Example: corn: 46% no till, 17% mulch till, 10% reduced till, 28% conventional till
- County's tillage on cropland impacts on sheet/rill erosion
 - Example: as a result of the actual conservation practices in the county, an estimated 10.1 tons of soil/acre/yr are SAVED!
- Estimated acres county corn and soybeans with indicated tillage system for each present crop (based on 2017 NASS data)
 - Example: present crop acreage of no till/strip till/ridge till: corn 23,000 acres/ soybeans 31,700 acres
- Impacts on diesel fuel
 - Example: as a result of the actual tillage practices on the county's corn and soybeans, an estimated 158,400 gallons of diesel fuel in 2018 are SAVED

TRANSECT DATA EXAMPLE REPORT

DUBOIS County's Tillage on Cropland - Impacts on Sheet/Rill EROSION in 2018:									
If each Corn or Soybean site on the 2017 transect	in DUBOIS County	were:							
CONVENTIONALLY TILLED = an estimated	<u>1,363,500</u>	tons of so	il would be	e lost from s	heet/rill				
DUBOIS County's Con	ventionally-Tilled Corr	n will lose	148,198	tons of soil i	n 2017				
DUBOIS County's Conv	entionally-Tilled Beans	s will lose	28,003	tons of soil i	n 2017				
REDUCE-TILLED = an estimated	<u>986,340</u>	tons of s	oil would	be lost					
DUBOIS Count	y's Reduce-Tilled Corr	n will lose	57,432	tons of soil i	n 2017				
DUBOIS County's	s Reduce-Tilled Beans	s will lose	42,421	tons of soil i	n 2017				
MULCH TILLED = an estimated	<u>850,960</u>	tons of s	oil would	be lost					
DUBOIS Cou	nty's Mulch-Tilled Corr	n will lose	84,518	tons of soil i	n 2017				
DUBOIS Count	ty's Mulch-Tilled Beans	s will lose	48,370	tons of soil i	n 2017				
NO-TILLED/STRIP/RIDGE TILLED = an estimated	<u>290,100</u>	tons of s	oil would	be lost					
DUBOIS C	county's No-Tilled Corr	n will lose	81,413	tons of soil i	n 2017				
DUBOIS Co	unty's No-Tilled Beans	s will lose	99,377	tons of soil i	n 2017				
As a result of the actual tillage practices on DUBOIS County's Corn and Soybean acres,									
an estimated:	<mark>974,800</mark> tor	ns of soi	l in 201	8 are SA	/ED!				

Cover Crop and Tillage Transects

in.gov/isda/2383.htm

2018 Living Covers Planted in All Crops

SHARING THE STORY

- The big picture
 - Showcases voluntary conservation work
 - Accountability
 - Staffing decisions
- Other local uses:
 - Grant applications
 - Working with local officials
 - Targeting cost-share programs
 - Identifying need
 - New customers

WASHINGTON COUNTY SOIL AND WATER CONSERVATION DISTRICT CONSERVATION

NUTRIENT REDUCTION LOADS: A REVIEW

RESULTS: CLEANER STREAMS AND HEALTHIER LAND

In 2014, by adopting voluntary land and water conservation practices, Washington County landowners and operators have prevented 35,496 tons of sediment,

planting crops for the protection and enrichment of the soil (cover crops), and establishing grasses for livestock that reduce erosion (pasture and hayland seeding.) Funding for these projects comes from a variety of sources. The Soil and Water Conservation District

IN 2015, THE CROPLAND TRANSECT SURVEY INDICATED THE FOLLOWING TONS OF SOIL PER ACRE PER YEAR ARE SAVED IN WASHINGTON COUNTY:

CONTACT US

Nathan Stoelting EMAIL nstoelting@isda.in.gov

Laura Fribley EMAIL Ifribley@isda.in.gov

Possibilities. Promise. Purpose.